# Reactions of 2-[(2-arylimino-2-cyano-1,1-dimethylethyl)arylamino]- <br> 3-methylbut-2-enenitrile with copper(II) acetate: synthesis of 2-(2,3-dihydro-2,2-dimethyl-3-oxo-1 H -indol-1-yl)-3-methylbut-2-enenitriles 

Sangmin Yun and Kyongtae Kim *<br>School of Chemistry and Molecular Engineering, Seoul National University, Seoul 151-742,<br>Korea. E-mail: kkim@plaza.snu.ac.kr.; Fax: 822874 8858; Tel: 8228806636

Received (in Cambridge, UK) 1st August 2002, Accepted 13th September 2002
First published as an Advance Article on the web 7th October 2002

Treatment of 2-[(2-arylimino-2-cyano-1,1-dimethylethyl)arylamino]-3-methylbut-2-enenitrile 15, prepared by reactions of N -aryl $\alpha$-cyanoenamines 3 with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv.) in the presence of pyridine ( 2 equiv.) in EtOH at reflux, and with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1 equiv.) in HOAc at reflux gave 2-(2,3-dihydro-2,2-dimethyl-3-oxo- 1 H -indol-1-yl)-3-methylbut-2-enenitriles 11 in moderate to good yields.

## Introduction

$N$-Alkyl- $\alpha$-cyanoenamines $\mathbf{1}$ and $N$-methyl- $N$-phenyl- $\alpha$-cyanoenamines 2 have received considerable attention as starting materials for the preparation of a variety of organic compounds. ${ }^{1}$ Nevertheless, no radical reactions of $\mathbf{1}$ and $\mathbf{2}$ have been reported. Recently we found that, unlike $\alpha$-cyanoenamines 1 and $\mathbf{2},{ }^{2} N$-aryl $\alpha$-cyanoenamines $\mathbf{3}$ were slowly autoxidized to $\alpha$-hydroperoxy- $N$-arylimidoyl cyanides 4 in either crystalline or solution state in air. ${ }^{1}$ The mechanism for the formation of hydroperoxides $\mathbf{4}$ is uncertain. A coupling between triplet oxygen and a radical 5 formed by oxidation of $\mathbf{3}^{3}$ may be envisaged as a possible route leading to 4 . We were interested in the generation of $\mathbf{5}$ and $\mathbf{6}$ since the coupling product formed from 5 and $\mathbf{6}$ could be utilized as a new precursor for the preparation of 1,2 -dihydroindol-3-one derivatives which are useful synthetic intermediates for the synthesis of biologically active compounds. ${ }^{4}$


1, $\mathrm{R}^{1}, \mathrm{R}^{2}, \mathrm{R}^{3}$ : alkyl; $\mathrm{R}^{4}$ : H


4
2, $R^{1}, R^{2}$ : alkyl; $\mathrm{R}^{3}$ : Me; $\mathrm{R}^{4}$ : Ph
3, $R^{1}, R^{2}$ : alkyl; $R^{3}: H ; R^{4}: A r$
With this in mind, we examined the reactivity of 3 toward Cu (II) acetate which is known as a good single electron oxidant ${ }^{5}$ under various reaction conditions. The results are described herein.

## Results and discussion

(i) In acetic acid at room temperature

Treatment of $\alpha$-cyanoenamine 3a $\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{R}^{3}=\mathrm{H}, \mathrm{R}^{4}=\right.$ Ph ) with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv.) in HOAc for 19 h at rt under a nitrogen atmosphere gave $\alpha$-hydroperoxyimidoyl cyanide $\mathbf{4 a}$ (7\%), $\alpha$-acetoxyimidoyl cyanide 7 (18\%), $\alpha$-anilinoimidoyl cyanide $\mathbf{8}(10 \%)$, along with unreacted $\mathbf{3 a}(50 \%)$ (Scheme 1). In order to trap any cationic intermediate which might cause the formation of 7 and/or $\mathbf{8}$, the same reaction was carried out in


Scheme 1
the presence of anisole ${ }^{6}$ in air. However, no anisole-derived product was detected. Instead, hydroperoxide 4a (34\%) which was the only identifiable product, was obtained, together with complex mixtures.

The formation of hydroperoxide $\mathbf{4 a}$ in different yields under a nitrogen atmosphere and in air indicates the involvement of oxygen. A single electron transfer from 3a by either selfoxidation (vide infra) or from $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, followed by deprotonation would give radicals $5 \mathrm{a}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Ar}=\mathrm{Ph}\right)$ and $6 \mathbf{a}\left(R^{1}=R^{2}=M e, A r=P h\right)$, which would react with oxygen to give $\mathbf{4 a}$.
The formation of $\mathbf{7}$ and $\mathbf{8}$ may be rationalized by assuming an intermediate 9 in which copper(II) acetate makes a complex on the nitrogen radical center of 5 a to give a $\mathrm{Cu}($ III $)$ intermediate $\mathbf{9}^{7}$ (Scheme 2). As a result the $\mathrm{C}=\mathrm{C}$ double bond may be acti-


10

## Scheme 2

vated to give the acetoxy compound 7 via a pericyclic transition state. On the other hand the reaction of the intermediate 9 with aniline would give anilino compound $\mathbf{8}$. Alternatively nucleophilic attack of acetic acid and aniline on a cation $\mathbf{1 0},{ }^{8}$ generated via oxidation of 5a and/or 6a by copper(II) acetate might give $\mathbf{7}$ and/or 8 , respectively.
It is uncertain whether the intermediate cation $\mathbf{1 0}$ is directly formed from either 5 a or $\mathbf{6 a}$, or via $\mathrm{Cu}($ III $)$ intermediate 9 .

## (ii) In acetic acid at reflux

The foregoing reaction was carried out at reflux in expectation of a shorter reaction time. The reaction was allowed to proceed until no spot corresponding to 3a was observed on TLC. Contrary to expectation, the reaction was not completed in a shorter time. From the reactions having no anisole as a cation trapping agent, were obtained 7 ( $6 \%$ ), 2,3-dihydro- 1 H -indole derivative 11a ( $8 \%$ ), isobutyramide $12(7 \%)$, acetanilide 13 $(35 \%)$, and complex mixtures which were unidentifiable (Scheme 3). Similarly, 7 (19\%), 11a (2\%), 12 (3\%), 13 (38\%), and unidentifiable complex mixtures were obtained from the reaction where anisole was added.
Amide $\mathbf{1 2}$ is envisaged to be formed by hydrolysis of 3a, which is analogous to the formation of an amide by treatment of 2-alkylaminoalk-2-enenitrile with anhydrous HCl in $\mathrm{EtOH} .{ }^{9}$ The formation of $\mathbf{1 3}$ may be explained by the reaction of aniline with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{10}$ at reflux. The structure of 1,2 -dihydro-indol-3-one 11a was determined based on spectroscopic ( ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, IR, MS) and analytical data. An examination of the structure 11a suggested that the coupling of radicals 5a and 6a, followed by an intramolecular cyclization, was involved. From the reaction carried out in the presence of anisole under the same conditions were obtained the same products, 7, 11a, 12, and 13. However, no anisole-incorporating product was detected.
The formation of 11a, albeit in low yield at reflux temperature may be due to an increase in the concentrations of $5 \mathbf{5}$ and 6a because it is expected that oxidation by $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ at an elevated temperature is more favorable than at rt as a result of


Scheme 3
an increase in the solubility of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}^{11}$ Therefore, it was desirable to find better conditions giving rise to radicals $\mathbf{5 a}$ and $\mathbf{6 a}$ in order to obtain 11a in a higher yield.

## (iii) Solvent effects

For higher concentrations of 5 and $\mathbf{6}$, we chose non-acidic polar solvents such as absolute EtOH, DMF, and DMSO wherein $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ was more soluble than in HOAc. From the reaction of 3 a with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in such solvents were isolated the head-to-head dimer 14a, head-to-tail dimer 15a, and $N$-phenyl-2-hydroxy-2-methylpropionamide 16 (Scheme 4).


Scheme 4
The quantities of 3 a and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$, solvent, temperature, reaction times, and yields of $\mathbf{1 4 a}, \mathbf{1 5 a}$, and $\mathbf{1 6}$ are summarized in Table 1.
Table 1 shows that compound $\mathbf{1 6}$ is formed in DMSO and in wet or dried DMF. An independent experiment showed that $N$-phenyl-2-methylpropionamide was inert to $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in DMF at $120{ }^{\circ} \mathrm{C}$. However, Compound 3a underwent selfoxidation in DMF at $120^{\circ} \mathrm{C}$ to give $\mathbf{4 a}^{1}$ (Scheme 5), which was monitored by TLC and GC-MS. Addition of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$

Table 1 Reactions of $\mathbf{3 a}$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in various solvents

|  | 3a/mmol | $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{mmol}$ | Solvent | T/ ${ }^{\circ} \mathrm{C}$ | $t / \mathrm{h}$ | Yield ${ }^{\text {a }}$ (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Entry |  |  |  |  |  | 14a | 15a | 16 |
| 1 | 1.05 | 2.10 | EtoH | Reflux/Ar | 48 | 36 | 25 | 0 |
| 2 | 1.08 | 2.16 | DMF | 120 | 24 | 41 | 15 | 27 |
| 3 | 0.77 | 1.69 | Dried | 120/Ar | 24 | 19 | 12 | 32 |
|  |  |  | DMF |  |  |  |  |  |
| 4 | 1.29 | 2.84 | DMSO | 120 | 24 | 37 | 0 | 28 |
| ${ }^{a}$ Isolated yields. |  |  |  |  |  |  |  |  |

Table 2 Reactions of 3a with different concentrations of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in EtOH

| Entry | 3a/mmol | $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{mmol}$ | Additive | $t / \mathrm{h}$ | Yield ${ }^{\text {a }}$ (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 14a | 15a | 17a |
| 1 | 1.05 | 2.10 |  | 48 | 36 | $25^{\text {b }}$ |  |
| 2 | 0.72 | 4.43 |  | 48 | 22 | 21 |  |
| 3 | 0.99 | 1.98 | Styrene | 48 | 30 | 20 |  |
| 4 | 0.78 | 1.72 | Hex-1-ene | 48 | 11 | 10 |  |
| 5 | 3.31 | 6.62 | Pyridine | 48 | 44 | 34 | $7^{\text {c }}$ |
| 6 | 5.01 | 15.03 | Pyridine | 96 | 26 | 30 | 20 |
| 7 | 1.47 | $3.23{ }^{\text {d }}$ |  | 48 | 27 | 22 |  |

${ }^{a}$ Isolated yields. ${ }^{b}$ Unreacted 3a was recovered in $24 \%$ yield. ${ }^{c}$ Unreacted 3a was recovered in $13 \%$ yield. ${ }^{d} \mathrm{Mn}(\mathrm{OAc})_{3}$ was used as an oxidant.



#### Abstract

Scheme 5 (2 equiv. based on 3a) to the mixture produced by self-oxidation gave 16 in $47 \%$ yield.

Conversion of $\mathbf{4 a}$ into $\mathbf{1 6}$ may be explained by assuming a complex formed by interaction between the imino nitrogen of $\mathbf{4 a}$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ acting as a Lewis acid, ${ }^{12}$ followed by hydrolysis of the imidoyl cyanide complex to give an $\alpha$ hydroperoxyamide in which the $\mathrm{O}-\mathrm{O}$ bond is readily cleaved by the action of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ to give 16. An analogous cleavage of the $\mathrm{O}-\mathrm{O}$ bond has been reported. ${ }^{7}$


## (iv) Concentrations of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathbf{H}_{2} \mathrm{O}$

Since ethanol was found to be a better solvent than any of the other solvents tried for $\mathbf{1 5 a}$, dependence of the yield of $\mathbf{1 5 a}$ with respect to the concentrations of $\mathrm{Cu}(\mathrm{OAc})_{2}$ was examined in EtOH . The results are summarized in Table 2. When the concentration of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ increased from 2 equiv. (entry 1) to 6 equiv. (entry 2), yields of both 14a and 15a decreased somewhat. Addition of either styrene (entry 3) or hex-1-ene (entry 4) to the solution of $\mathbf{3 a}$ containing $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2 equiv.), did not lead to the formation of a radical-incorporating product. Yields of $\mathbf{1 4 a}$ and $\mathbf{1 5 a}$ increased to $44 \%$ and $34 \%$, respectively, when the reaction was carried out in the presence of pyridine ( 2 equiv.), which was reported to increase the oxidation potential of $\mathrm{Cu}(\mathrm{II})^{5 a}$ under the foregoing conditions. Interestingly, compound 17a, which is envisaged to be formed by the substitution of one of the cyano groups of $\mathbf{1 4 a}$ by an ethoxy group, was formed in $7 \%$ yield (entry 5). The yield of 17a $(20 \%)$ increased significantly at the expense of the yields of $\mathbf{1 4 a}$ and $\mathbf{1 5 a}$ when a higher concentration of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (3 equiv.) and a longer reaction time ( 96 h ) was allowed (entry 6). Use of $\mathrm{Mn}(\mathrm{OAc})_{3}{ }^{13}$ in place of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as an oxidant caused a decrease in the yields of $\mathbf{1 4 a}$ and $\mathbf{1 5 a}$ (entry 7). We chose the conditions represented by entry 5 for other reactions of cyanoenamines. Reaction times and yields of $\mathbf{1 4}$, $\mathbf{1 5}$, and $\mathbf{1 7}$ are summarized in Table 3.

Table 3 shows that the reactions of $\mathbf{3}$ bearing an electrondonating group on the Ar group, i.e., 3-Me (24 h), 4-Me (22 h),

Table 3 Reactions of 3 with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in the presence of pyridine

| Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | Ar | $t / \mathrm{h}$ | Yield ${ }^{\text {a }}$ (\%) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | 14 | 15 | 17 |
| 3a | Me | Me | Ph | 48 | a 44 | a 34 | a 7 |
| 3b | Me | Me | $4-\mathrm{ClC}_{6} \mathrm{H}_{4}$ | 60 | b 21 | b 34 | b 24 |
| 3 c | Me | Me | $4-\mathrm{BrC}_{6} \mathrm{H}_{4}$ | 48 | c 24 | c 35 | c 18 |
| 3d | Me | Me | 2- $\mathrm{MeC}_{6} \mathrm{H}_{4}$ | 24 | d 34 | d 8 |  |
| 3 e | Me | Me | $3-\mathrm{MeC}_{6} \mathrm{H}_{4}$ | 24 | e 37 | e 31 |  |
| 3 f | Me | Me | $4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ | 22 | f 37 | f 33 |  |
| 3 g | Me | Me | $4-\mathrm{MeOC}_{6} \mathrm{H}_{4}$ | 12 | g 15 | g 0 |  |
| $3 \mathbf{h}^{\text {b }}$ | Me | Et | $4-\mathrm{MeC}_{6} \mathrm{H}_{4}$ | 22 | h 25 | h 17 |  |
| 3 i | $-(\mathrm{CH}$ |  | Ph | 48 | i 20 | i 29 |  |
| 3j | Et | Et | Ph | 48 | j 0 | j 41 |  |

${ }^{a}$ Isolated yields. ${ }^{b}$ A mixture of $(E)$-and ( $Z$ )-3h (1.2:1) was used.


17a, $\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}$
and $2-\mathrm{Me}(24 \mathrm{~h})$ have shorter reaction times compared with those with an electron-withdrawing group on the Ar , i.e., $4-\mathrm{Cl}$ ( 60 h ), and $4-\mathrm{Br}(48 \mathrm{~h})$. Moreover, in the case of the Ar having an electron-withdrawing group, compounds $\mathbf{1 7 b}, \mathbf{c}$ were formed in comparable yields to those of $\mathbf{1 4 b}, \mathbf{c}$, respectively. The result indicates that the yields of $\mathbf{1 7}$ increase with the reaction times. In addition, it is noteworthy that when $\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Et}$, no head-to-head product $\mathbf{1 4 j}$ is formed. This must be due to the severe steric hindrance arising from two ethyl groups of $5\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\right.$ Et). In contrast, no head-to-tail product $\mathbf{1 5 g}$ was detected. This might be due to the instability of radicals $\mathbf{5 g}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Ar}\right.$ $\left.=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ and $\mathbf{6 g}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Ar}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)$ and/or dimers $\mathbf{1 4 g}$ and $\mathbf{1 5 g}$, which have an electron-donating group, in view of the relatively short reaction time ( 12 h ) and a lower yield of $\mathbf{1 4 g}$ compared with those of other head-to-head dimers.

Attempts to separate a mixture of stereoisomers $\mathbf{3 h}(E: Z=$ 1.2:1) were unsuccessful. Their reaction afforded a mixture of diastereomers $\mathbf{1 4 h}$ and $\mathbf{1 5 h}$, respectively, which were inseparable by column chromatography. However, the structures of diastereomeric mixtures of $\mathbf{1 4 h}$ and $\mathbf{1 5 h}$ together with the ratios of diastereomers $\mathbf{1 4 h}$ and $\mathbf{1 5 h}$, were determined based on ${ }^{1} \mathrm{H}$ NMR and high resolution mass spectroscopy (vide infra).

## (v) Cyclization of head-to-tail dimers 15

Compound 11a was obtained from the reaction of 3a with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in HOAc at reflux under an argon atmosphere In order to gain information about the mechanistic pathway, compounds $\mathbf{1 4 a}$ and $15 a$ were subjected to the same reaction conditions. Interestingly, treatment of $\mathbf{1 4 a}$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (1.1 equiv.) in HOAc at reflux gave inseparable unknown mixtures, whereas compound $\mathbf{1 5 a}$ under the same conditions as for 14a afforded 2-(2,3-dihydro-2,2-dimethyl-3-oxo-1 H -indol1 -yl)-3-methylbut-2-enenitrile 11a in $75 \%$ yield. The same reaction in the presence of $\mathrm{AlCl}_{3}$ ( 2.0 equiv.) instead of $\mathrm{Cu}(\mathrm{OA}-$ c) $)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in benzene at rt afforded 11a and imino compound $\mathbf{1 8}$ in $12 \%$ and $35 \%$ yields, respectively (Scheme 6).

15a


11a, $R^{1}=R^{2}=M e, X=H$
18
(75\%)
Scheme 6

In order to ascertain the generality of the transformation of 15 into 11 , compound 15 was subjected to the conditions under which compound 11a was obtained (Scheme 6). In contrast to the reactions of $\mathbf{1 4}$, which gave rise to complex mixtures, reactions of compounds $\mathbf{1 5 b} \mathbf{b} \mathbf{j}$ under the same conditions afforded 3-alkyl-2-(2,2-dialkyl-2,3-dihydro-3-oxo-1 H -indol-1-yl)alk-2-enenitriles 11b-j in good yields except for $\mathbf{1 5 j}\left(\mathrm{R}^{1}=\mathrm{R}^{2}=\right.$ Et). Quantities of reactants, reaction times, and yields of $\mathbf{1 1}$ are summarized in Table 4.

The reactions of compound $\mathbf{1 5 a}$ in the presence (1.1-1.8 equiv.) and in the absence of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ gave 11a in $75 \%$ and $56 \%$ yields, respectively. The higher yield of 11a in
the presence of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ indicates the importance of $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ as a Lewis acid catalyst. When the aryl group has a 3-Me group on it, regioisomers $\mathbf{1 1 e}(\mathbf{I})$ and $\mathbf{1 1 e}($ II) were obtained in $14 \%$ and $58 \%$ yields, respectively. The predominant formation of $\mathbf{1 1 e} \mathbf{e}(\mathbf{I I})$ rather than $\mathbf{1 1 e ( \mathbf { I } )}$ may be due to the lesser steric interaction in the course of the cyclization. When one of the R groups is an ethyl group ( $\mathrm{R}^{2}=\mathrm{Et}$ ), a longer reaction time was required than with $\mathrm{R}^{2}=\mathrm{Me}$, presumably due to the steric hinderance. It took 48 h for the reaction of $\mathbf{1 5 j}$ which has two ethyl groups. This indicates the significance of the steric hindrance.

To the best of our knowledge, this type of compound $\mathbf{1 1}$ has never been reported although several methods of synthesizing 1,2-dihydroindol-3-ones are known. ${ }^{14}$,, 2 -Dihydroindol-3-ones are an important class of organic compound because not only have they been utilized as intermediates for the synthesis of various biologically active compounds such as indomethacin, ${ }^{15}$ tryptamin, ${ }^{16}$ ellipticine, ${ }^{17}$ but also some natural products, i.e., austamide ${ }^{18}$ and brevianamide ${ }^{19}$ consist of this skeleton. There have been numerous methods for the synthesis of 1,2-dihydroindol-3-ones which comprise mainly the cyclization of alkyl $o$-azidoaryl ketones under the basic conditions, ${ }^{20}$ the reaction of 2-phenylindol-3-one with a Grignard reagent, ${ }^{21}$ and MCPBA mediated oxidation of 1 -substituted 3 -formyl-1 $H$ indoles. ${ }^{22}$ In summary, it has been found that the title compound $\mathbf{8}$ undergoes an intramolecular cyclization, analogous to a Friedel-Craft acylation, in the presence of copper(II) acetate in HOAc at reflux to give 1,2-dihydro-2,2-dimethylindol-3-ones having an $\alpha$-cyanoisobutenyl group at $\mathrm{N}-1$ of the indol-3-ones. It would appear worthwhile to explore further the synthetic utility of 1,2-dihydroindol-3-ones, and such research is currently in progress.

## Experimental

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 300 and 75 MHz , respectively, for samples in $\mathrm{CDCl}_{3}$ solution containing tetramethylsilane as internal standard: $J$-values are given in Hz . IR spectra were recorded for KBr discs or thin-film samples on KBr plates. Mass spectra were obtained by electron impact at 70 eV , unless otherwise specified. Elemental analyses were determined by the National Center for Inter-University Research Facilities, Seoul National University. Column chromatography was performed using silica gel (Merck, 70-230 mesh ASTM). Mps were determined on a Fisher-Johns melting-point apparatus and are uncorrected. $\alpha$-Chloroalkylaldehydes ${ }^{23}$ and $\alpha$-chloroaldimines ${ }^{24}$ were prepared according to literature precedures.

General procedure for the synthesis of 3-alkyl-2-arylaminoalk-2enenitriles 3
To a solution of $\alpha$-chloroaldehyde ( $38-84 \mathrm{mmol}$ ) in $\mathrm{CCl}_{4}$ $\left(20 \mathrm{~cm}^{3}\right)$ were added aniline derivatives ( $38-84 \mathrm{mmol}$ ) and potassium carbonate ( $23-91 \mathrm{mmol}$ ). The mixture was stirred for 12 h at rt and then heated for 1 h at reflux. The cooled reaction mixture was filtered to remove the solid which was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \times 3 \mathrm{~cm}^{3}\right)$. The filtrate was concentrated, followed by addition of $\mathrm{CH}_{3} \mathrm{CN}\left(120-150 \mathrm{~cm}^{3}\right)$. Potassium cyanide ( $115-224 \mathrm{mmol}$ ) was added to the solution, which was heated for $8-13 \mathrm{~h}$ at reflux. The cooled reaction mixture was filtered and then washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Removal of the solvent in vacuo gave a brown liquid, which was chromatographed on a silica gel column ( $2 \times 20 \mathrm{~cm}$ ) using a mixture of $n$-hexane and EtOAc (5:1) to give the title compound.

3-Methyl-2-phenylaminobut-2-enenitrile 3a. 2-Chloro-2methylpropionaldehyde ( $6.38 \mathrm{~g}, 59.3 \mathrm{mmol}$ ) was treated with aniline ( $5.52 \mathrm{~g}, 59.3 \mathrm{mmol}$ ) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(9.84 \mathrm{~g}$, 71.2 mmol ) in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(7.73 \mathrm{~g}, 118.6$

Table 4 Quantities of reactants, reaction times, and yields of $\mathbf{1 1}$

| Compound | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | X | mmol | $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O} / \mathrm{mmol}$ | $t / \mathrm{h}$ | Compound | 11 Yield $^{\text {a }}$ (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 15a | Me | Me | H | 0.48 | 0.53 | 14 | a (X $=\mathrm{H}$ ) | 75 |
| 15a | Me | Me | H | 0.80 | 0 | 30 | $\mathrm{a}(\mathrm{X}=\mathrm{H})$ | 56 |
| 15c | Me | Me | $4-\mathrm{Br}$ | 0.17 | 0.20 | 28 | b (X $=5-\mathrm{Br}$ ) | 45 |
| 15b | Me | Me | $4-\mathrm{Cl}$ | 0.36 | 0.65 | 14 | $\mathbf{c}(\mathrm{X}=5-\mathrm{Cl})$ | 86 |
| 15d | Me | Me | 2-Me | 0.19 | 0.23 | 14 | d ( $\mathrm{X}=7-\mathrm{Me}$ ) | 68 |
| 15e | Me | Me | 3-Me | 0.69 | 0.83 | 6 | e (I) (X = 4-Me) | 14 |
|  |  |  |  |  |  |  | e (II)( $\mathrm{X}=6-\mathrm{Me}$ ) | 58 |
| 15 f | Me | Me | 4-Me | 0.38 | 0.46 | 4 | f (X $=5-\mathrm{Me}$ ) | 92 |
| 15h | Me | Et | 4-Me | 0.20 | 0.24 | 30 | h ( $\mathrm{X}=5-\mathrm{Me}$ ) | $60^{\text {b }}$ |
| 15j | Et | Et | H | 0.33 | 0.40 | 480 | $\mathrm{j}(\mathrm{X}=\mathrm{H})$ | 15 |

mmol) in $\mathrm{CH}_{3} \mathrm{CN}\left(150 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave 3a ( 5.62 g , $55 \%$ ).

2-(4-Chlorophenylamino)-3-methylbut-2-enenitrile 3b. 2-Chloro-2-methylpropionaldehyde $(6.65 \mathrm{~g}, 61.8 \mathrm{mmol})$ was treated with 4-chloroaniline $(7.89 \mathrm{~g}, 61.8 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(10.26 \mathrm{~g}, 74.2 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(8.05 \mathrm{~g}, 123.6 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(180 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave 3 b ( $5.62 \mathrm{~g}, 50 \%$ ).

2-(4-Bromophenylamino)-3-methylbut-2-enenitrile 3c. 2-Chloro-2-methylpropionaldehyde ( $8.37 \mathrm{~g}, 77.8 \mathrm{mmol}$ ) was treated with 4-bromoaniline $(13.39 \mathrm{~g}, 77.8 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(6.45 \mathrm{~g}, 46.7 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(15.20 \mathrm{~g}, 223.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(230 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $3 \mathbf{c}(8.21 \mathrm{~g}, 42 \%)$.

3-Methyl-2-(o-tolylamino)but-2-enenitrile 3d. 2-Chloro-2methylpropionaldehyde $(8.17 \mathrm{~g}, 76.0 \mathrm{mmol})$ was treated with $o$ toluidine $(8.14 \mathrm{~g}, 76.0 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(6.30 \mathrm{~g}$, $45.6 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(9.90 \mathrm{~g}, 152.0$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(230 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $\mathbf{3 d}(8.06 \mathrm{~g}$, 57\%).

3-Methyl-2-(m-tolylamino)but-2-enenitrile 3e. 2-Chloro-2methylpropionaldehyde ( $8.18 \mathrm{~g}, 76.1 \mathrm{mmol}$ ) was treated with $m$ toluidine $(8.15 \mathrm{~g}, 76.1 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(12.62 \mathrm{~g}$, $91.3 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(9.90 \mathrm{~g}, 152.1$ $\mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(230 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $3 \mathrm{e}(7.51 \mathrm{~g}$, $53 \%$ ).

3-Methyl-2-(p-tolylamino)but-2-enenitrile 3f. 2-Chloro-2methylpropionaldehyde $(9.09 \mathrm{~g}, 84.5 \mathrm{mmol})$ was treated with $p$ toluidine ( $9.06 \mathrm{~g}, 84.5 \mathrm{mmol}$ ) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(7.01 \mathrm{~g}$, $50.7 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(11.01 \mathrm{~g}$, $169.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(250 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $\mathbf{3 f}$ ( $9.13 \mathrm{~g}, 58 \%$ ).

2-(4-Methoxyphenylamino)-3-methylbut-2-enenitrile 3g. 2-Chloro-2-methylpropionaldehyde $(7.43 \mathrm{~g}, 69.1 \mathrm{mmol})$ was treated with $p$-anisidine $(8.51 \mathrm{~g}, 69.1 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(5.73 \mathrm{~g}, 41.5 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(13.49 \mathrm{~g}, 207.1 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(210 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $3 \mathrm{~g}(7.26 \mathrm{~g}, 52 \%$ ); liquid (Found: C, 71.2; H, 6.9; $\mathrm{N}, 13.9 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 71.3 ; \mathrm{H}, 7.00 ; \mathrm{N} 13.85 \%$; $v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3352,2910,2224$ and $1624 ; \delta_{\mathrm{H}} 1.87(3 \mathrm{H}, \mathrm{s}$,
$\left.\mathrm{CH}_{3}\right), 2.11\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.65(1 \mathrm{H}$, br s, $\mathrm{NH}), 6.67(2 \mathrm{H}, \mathrm{d}, J 8.9 \mathrm{~Hz}, \mathrm{ArH})$ and $6.83(2 \mathrm{H}, \mathrm{d}, J 8.9 \mathrm{~Hz}$, ArH); $\delta_{\mathrm{C}} 19.06,21.99,55.68,110.00,114.88,116.19,122.82$, 137.58, 147.18 and $153.94 ; \mathrm{m} / \mathrm{z} 202\left(\mathbf{M}^{+}, 91 \%\right), 187\left(\mathbf{M}^{+}-\mathrm{CH}_{3}\right.$, 100).
$(E)$ - and ( $Z$ )-3-Methyl-2-(p-tolylamino)pent-2-enenitrile ( $E$ )and $(\boldsymbol{Z})$-3h. 2-Chloro-2-methylbutyraldehyde $(4.98 \mathrm{~g}, 41.3$ mmol ) was treated with aniline ( $4.29 \mathrm{~g}, 40.0 \mathrm{mmol}$ ) in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.31 \mathrm{~g}, 24.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(8.07 \mathrm{~g}, 123.9 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(120 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave a mixture of $(E)$ - and $(Z)-3 \mathrm{~h}(4.45 \mathrm{~g}$, $56 \%$ ); liquid (Found: C, 77.9; H, 8.1; N, 13.9. $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires C, 78.0; H, 8.05; N 14.0\%); $v_{\max }(\mathrm{KBr}) / \mathrm{cm}^{-1} 3352$, 2960, 2920, 2208 and $1611 ;(Z)$-isomer, $\delta_{\mathrm{H}} 0.95\left(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.05$ $\left(3 \mathrm{H}, \mathrm{d}, J 1.2 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.26(2 \mathrm{H}, \mathrm{q}, J 7.6$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.48-6.57(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 6.97 $(2 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{ArH}) ;(E)$-isomer, $1.10\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.19(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH} 3), 2.43(2 \mathrm{H}, \mathrm{q}, J 7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 4.56(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.48-6.57(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $6.97(2 \mathrm{H}$, d, $J 8.2 \mathrm{~Hz}, \mathrm{ArH}) ; m / z 200\left(\mathrm{M}^{+}, 97 \%\right), 185\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 100\right)$.

2-Anilino-2-cyclohexylideneacetonitrile 3i. 1-Chlorocyclohexanecarbaldehyde ( $7.94 \mathrm{~g}, 54.2 \mathrm{mmol}$ ) was treated with aniline $(5.04 \mathrm{~g}, 54.2 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(4.49 \mathrm{~g}$, 32.5 mmol ) in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(10.58 \mathrm{~g}$, $162.5 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(160 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $\mathbf{3 i}$ ( $6.52 \mathrm{~g}, 57 \%$ ); $\mathrm{mp} 82-84{ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 79.3; $\mathrm{H}, 7.6 ; \mathrm{N}, 13.1 . \mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires $\mathrm{C}, 79.2 ; \mathrm{H}, 7.6$; $\mathrm{N}, 13.2 \%) ; v_{\max }$ (neat)/ $\mathrm{cm}^{-1} 3352,2976,2208$ and $1629 ; \delta_{\mathrm{H}} 0.85$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02\left(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.15(2 \mathrm{H}, \mathrm{q}$, $\left.J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.35\left(2 \mathrm{H}, \mathrm{q}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH})$, $6.53(2 \mathrm{H}, \mathrm{d}, \mathrm{ArH}, J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{t}, \mathrm{ArH}, J 7.5 \mathrm{~Hz}$, $\mathrm{ArH})$ and $7.07(2 \mathrm{H}, \mathrm{td}, \mathrm{ArH}, J 7.5,0.9 \mathrm{~Hz}, \mathrm{ArH}) ; \delta_{\mathrm{C}}$ 11.77, 12.71, 22.78, 26.15, 107.86, 114.10, 116.25, 119.59, 129.08, 143.95 and 160.37 ; m/z $200\left(\mathrm{M}^{+}, 100 \%\right), 185\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 95\right)$.

2-Anilino-3-ethylpent-2-enenitrile 3j. 2-Chloro-2-ethylbutyraldehyde $(5.16 \mathrm{~g}, 38.3 \mathrm{mmol})$ was treated with aniline $(3.57 \mathrm{~g}$, $38.3 \mathrm{mmol})$ in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}(3.18 \mathrm{~g}, 23.0 \mathrm{mmol})$ in $\mathrm{CCl}_{4}$, followed by addition of $\mathrm{KCN}(7.48 \mathrm{~g}, 114.9 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}\left(120 \mathrm{~cm}^{3}\right)$. Work-up of the reaction mixture in accordance with the above general procedure gave $3 \mathrm{j}(4.21 \mathrm{~g}$, $54 \%$ ); liquid (Found: C, $78.1 ; \mathrm{H}, 8.1 ; \mathrm{N}, 13.9 . \mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{2}$ requires C, 78.0; H, 8.05; N, 14.0\%); $v_{\max }$ (neat)/ $/ \mathrm{cm}^{-1} 3352,2976,2208$ and $1629 ; \delta_{\mathrm{H}} 0.85\left(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.02(3 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}$, $\left.\mathrm{CH}_{3}\right), 2.15\left(2 \mathrm{H}, \mathrm{q}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.35\left(2 \mathrm{H}, \mathrm{q}, J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $4.68(1 \mathrm{H}, \mathrm{s}, \mathrm{NH}), 6.53(2 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 6.70(1 \mathrm{H}, \mathrm{t}, J 7.5$ $\mathrm{Hz}, \mathrm{ArH})$ and $7.07(2 \mathrm{H}, \mathrm{td}, J 7.5,0.9 \mathrm{~Hz}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 11.77,12.71$, $22.78,26.15,107.86,114.10,116.25,119.59,129.08,143.95$ and 160.37; m/z $200\left(\mathrm{M}^{+}, 100 \%\right), 185\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 95\right)$.

## Reaction of 3a with $\mathrm{Cu}(\mathrm{OAc})_{2}$

(i) Under a nitrogen atmosphere at $\mathbf{r t}$. To a solution of 3a $(178 \mathrm{mg}, 1.03 \mathrm{mmol})$ in $\mathrm{HOAc}\left(5 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(453 \mathrm{mg}, 2.27 \mathrm{mmol})$. The mixture was stirred for 19 h at rt , followed by addition of water $\left(30 \mathrm{~cm}^{3}\right)$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$. The mixture was neutralized with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \times 2 \mathrm{~cm}^{3}\right)$. The combined extracts were dried over anhydrous $\mathrm{MgSO}_{4}$ Removal of the solvent in vacuo gave a brown liquid, which was chromatographed on a silica gel column $(2 \times 20 \mathrm{~cm})$ using a mixture of $n$-hexane and EtOAc (10:1) to give 2-cyano-1,1-dimethyl-2-phenyliminoethyl acetate $7(20 \mathrm{mg}, 18 \%)$; liquid (Found: C, $67.9 ; \mathrm{H}, 6.0 ; \mathrm{N}, 12.1 . \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ requires C , 67.8; $\mathrm{H}, 6.1 ; \mathrm{N}, 12.2 \%$ ); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1}$ 2990, 2940, 2219, 1742, $1638,1591,1483,1371,1250,1147,1081,1018,781$ and 699 ; $\delta_{\mathrm{H}} 1.64\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.07\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.97-7.37(5 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 21.82,24.96,81.39,110.37,120.27,127.55,129.63$, $147.54,148.79$ and $170.92 ; \mathrm{m} / \mathrm{z} 230\left(\mathrm{M}^{+}, 100 \%\right)$, 172 (58), 129 (75), 101 (42), 77 (72). Continuous elution with the same solvent mixture gave 3-anilino-3-methyl-2-phenyliminobutyronitrile $\mathbf{8}(12 \mathrm{mg}, 10 \%)$ : liquid (Found: C, $77.4 ; \mathrm{H}, 6.4 ; \mathrm{N}$, 15.9. $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3}$ requires $\mathrm{C}, 77.5 ; \mathrm{H}, 6.5 ; \mathrm{N}, 16.0 \%$ ); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2990,2938,2220,1636,1572,1145$ and $702 ; \delta_{\mathrm{H}} 1.69(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}\right), 4.14(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NH}), 6.69(2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.79$ $(1 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.68-7.08(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.17(2 \mathrm{H}, \mathrm{t}$, $J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.25-7.33(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.41(2 \mathrm{H}, \mathrm{t}, J 7.4$ $\mathrm{Hz}, \mathrm{ArH}) ; m / z 263$ ( $\mathrm{M}^{+}, 4 \%$ ), 172 (3), 134 (100). Continuous elution with the same solvent mixture gave unreacted $\mathbf{3 a}(87 \mathrm{mg}$, $50 \%$ ) and 3-hydroperoxy-3-methyl-2-phenyliminobutyronitrile $4 \mathbf{a}(14 \mathrm{mg}, 7 \%)$ : $\mathrm{mp} 53-55^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 64.9; H, 6.1; N, 13.9. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 64.7; H, 5.9; N 13.7\%); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3250,2990,2224$ and $1625 ; \delta_{\mathrm{H}} 1.63(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3}\right), 7.09(2 \mathrm{H}, \mathrm{d}, J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.32(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}$, ArH), $7.44(2 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{ArH})$ and $8.86(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OOH})$; $\delta_{\mathrm{C}} 22.17,84.96,110.29,120.05,127.61,129.26,147.59$ and 147.70 .
(ii) In the presence of anisole in air at $\mathbf{r t}$. To a solution of 3a $(342 \mathrm{mg}, 2.00 \mathrm{mmol})$ in $\mathrm{HOAc}\left(10 \mathrm{~cm}^{3}\right)$ was added anisole $(238 \mathrm{mg}, 2.20 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(453 \mathrm{mg}, 2.27 \mathrm{mmol})$. The mixture was stirred for 24 h at rt . The mixture was worked up as described in (i). Chromatography of the reaction mixture using a mixture of $n$-hexane and EtOAc ( $5: 1$ ) gave $4 \mathbf{a}(137 \mathrm{mg}$, $34 \%$ ).
(iii) Under a nitrogen atmosphere at reflux. To a solution of 3a ( $210 \mathrm{mg}, 1.22 \mathrm{mmol}$ ) in $\mathrm{HOAc}\left(5 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(465 \mathrm{mg}, 2.33 \mathrm{mmol})$. The mixture was heated for 24 h at reflux and then worked up as before. Chromatography $(2 \times 20 \mathrm{~cm})$ of the reaction mixture using a mixture of $n$-hexane and EtOAc (5:1) gave $7(17 \mathrm{mg}$, $6 \%$ ), unknown mixtures ( 40 mg ), a mixture of $N$-phenylisobutyramide 12 and 2-(2,3-dihydro-2,2-dimethyl-3-oxo-1 H -indol-1-yl)-3-methylbut-2-enenitrile 11a ( 45 mg ). Elution with the same solvent mixture (2:1) gave acetanilide $\mathbf{1 3}(58 \mathrm{mg}, 35 \%)$. Rechromatography ( $2 \times 20 \mathrm{~cm}$ ) of the mixture of 11 a and 12 using a mixture of $n$-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2: 1)$ gave $12(14 \mathrm{mg}$, $7 \%$ ) and 11a ( $23 \mathrm{mg}, 8 \%$ ): mp $60-62{ }^{\circ} \mathrm{C}$ (from $n$-hexane$\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, $75.0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 11.7 . \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 75.0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 11.7 \%$ ); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2210,1707$ and $1611 ; \delta_{\mathrm{H}} 1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.40\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.82\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.56(1 \mathrm{H}, \mathrm{d}, J 8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.82(1 \mathrm{H}, \mathrm{t}, J 7.4$ $\mathrm{Hz}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{t}, J 7.2 \mathrm{~Hz}, \mathrm{ArH})$ and $7.61(1 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 20.54,22.10,22.54,22.56,69,89,105.91,110.23$, $116.44,119.35,119.70,125.29,137.61,156.85,159.99$ and 202.74; m/z $240\left(\mathrm{M}^{+}\right)$.
(iv) In the presence of anisole under a nitrogen atmosphere at reflux. To a solution of $\mathbf{3 a}(200 \mathrm{mg}, 1.16 \mathrm{mmol})$ in HOAc
$\left(5 \mathrm{~cm}^{3}\right)$ under a nitrogen atmosphere was added anisole $(275 \mathrm{mg}, 2.55 \mathrm{mmol})$ and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(463 \mathrm{mg}, 2.55 \mathrm{mmol})$. The mixture was heated for 24 h at reflux and then worked up as before. Chromatography of the reaction mixture using a mixture of $n$-hexane and EtOAc (5:1) gave 7 ( $51 \mathrm{mg}, 19 \%$ ), unknown mixtures ( 32 mg ), and a mixture of 11a and 12 $(14 \mathrm{mg})$. Elution with the same solvent mixture (2:1) gave 13 $(59 \mathrm{mg}, 38 \%)$. Rechromatography $(2 \times 20 \mathrm{~cm})$ of the mixture of 11 a and $\mathbf{1 2}$ using a mixture of $n$-hexane and EtOAc (2:1) gave $12(7 \mathrm{mg}, 3 \%)$ and 11a ( $5 \mathrm{mg}, 2 \%$ ).

## Reaction of 3a with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathbf{H}_{2} \mathrm{O}$ in different solvents

(i) In EtOH. To a solution of 3a ( $180 \mathrm{mg}, 1.05 \mathrm{mmol}$ ) in EtOH $\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(381 \mathrm{mg}, 2.10 \mathrm{mmol})$ under an argon atmosphere. The mixture was heated for 48 h at reflux, followed by work-up as before. Chromatography $(2 \times 20 \mathrm{~cm})$ of the reaction mixture using a mixture of $n$-hexane and EtOAc (10:1) as the eluent gave 3,3,4,4-tetramethyl-2,5bis(phenylimino)adiponitrile 14a ( $47 \mathrm{mg}, 36 \%$ ), 2-(2-cyano- $N$ -phenyl-2-phenylimino-1,1-dimethylethylamino)-3-methylbut-2-enenitrile 15a ( $33 \mathrm{mg}, 25 \%$ ), and unreacted 3a ( $43 \mathrm{mg}, 24 \%$ ). 14a: mp 110-112 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$ ) (Found: C , 77.0; H 6.4; $\mathrm{N}, 16.2 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4}$ requires C, 77.2; $\mathrm{H}, 6.50 ; \mathrm{N}, 16.4 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2211$ and $1616 ; \delta_{\mathrm{H}} 1.49\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right)$ and 6.92-7.34 (10H, m, $2 \times \mathrm{ArH}) ; \delta_{\mathrm{C}} 23.38,48.60,111.60,120.09$, $127.46,129.68,149.13$ and $149.99 ; ~ m / z 342\left(\mathrm{M}^{+}, 47 \%\right), 341(22)$, 327 (13), 250 (32), 213 (55), 172 (77), 171 (100).15a: liquid (Found: C, 77.1; $\mathrm{H}, 6.4 ; \mathrm{N}, 16.3 . \mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{4}$ requires C, 77.2; H , $6.5 ; \mathrm{N}, 16.4 \%$ ); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2207,1632$ and $1592 ; \delta_{\mathrm{H}} 1.68$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.05\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$ and $6.89-$ $7.35(10 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}) ; \delta_{\mathrm{C}} 22.85,22.68,23.91,65.75,111.93$, 112.44, 118.57, 119.93, 122.12, 123.81, 126.30, 127.60, 129.75, $129.85,145.19,148.75,150.33$ and $158.77 ; \mathrm{m} / \mathrm{z} 342\left(\mathrm{M}^{+}, 30 \%\right)$, 341 (26), 327 (9), 250 (11), 213 (14), 172 (41), 171 (51), 155 (30), 144 (53), 77 (100).
(ii) In DMF. To a solution of $\mathbf{3 a}(186 \mathrm{mg}, 1.08 \mathrm{mmol})$ in DMF $\left(10 \mathrm{~cm}^{3}\right)$ was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(381 \mathrm{mg}, 2.16 \mathrm{mmol})$ at rt. The mixture was heated for 24 h at $120^{\circ} \mathrm{C}$. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added to the cooled reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3} \times 3\right)$ and $\operatorname{EtOAc}\left(50 \mathrm{~cm}^{3}\right)$ in a series. The combined organic layer was dried and worked up as usual. Chromatography ( $2 \times 20 \mathrm{~cm}$ ) of the residue using a mixture of $n$-hexane and EtOAc (10:1) gave 14a (74 mg, $41 \%$ ) and 15a ( $26 \mathrm{mg}, 15 \%$ ). Subsequent elution with the same solvent mixture (3:1) gave 2-hydroxy-2-methyl- $N$-phenylpropionamide 16 ( $52 \mathrm{mg}, 27 \%$ ): liquid (Found: C, $67.1 ; \mathrm{H}, 7.1$; $\mathrm{N}, 7.7 . \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$ requires $\left.\mathrm{C}, 67.0 ; \mathrm{H}, 7.3 ; \mathrm{N}, 7.8 \%\right) ; v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3263,2974,1653,1441,1185$ and $1152 ; \delta_{\mathrm{H}} 1.47(6 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.73(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.04(1 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{ArH})$, $7.25(2 \mathrm{H}, \mathrm{t}, J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.49(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{ArH})$ and $8.67\left(1 \mathrm{H}\right.$, br s, NH); $m / z 179\left(\mathrm{M}^{+}, 29 \%\right), 121$ (45), 93 (100). The same reaction of $\mathbf{3 a}(133 \mathrm{mg}, 0.77 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(34 \mathrm{mg}, 1.69 \mathrm{mmol})$ in dried DMF under an argon atmosphere gave $\mathbf{1 4 a}(34 \mathrm{mg}, 19 \%)$, $\mathbf{1 5 a}(21 \mathrm{mg}, 12 \%)$, and $16(62 \mathrm{mg}, 32 \%)$.
(iii) In DMSO. From the reaction of 3a ( $222 \mathrm{mg}, 1.29$ mmol) with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(516 \mathrm{mg}, 2.84 \mathrm{mmol})$ in DMSO $\left(10 \mathrm{~cm}^{3}\right)$ at $120{ }^{\circ} \mathrm{C}$ were obtained $\mathbf{1 4 a}(83 \mathrm{mg}, 37 \%)$ and $\mathbf{1 5 a}$ ( $64 \mathrm{mg}, 28 \%$ ).

## Reaction of 4 a with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathbf{H}_{2} \mathrm{O}$

A solution of $\mathbf{3 a}(186 \mathrm{mg}, 1.05 \mathrm{mmol})$ in DMF $\left(10 \mathrm{~cm}^{3}\right)$ was heated for 24 h at $120{ }^{\circ} \mathrm{C}$ by which time 3a was completely converted into 3-hydroperoxy-3-methyl-2-phenyliminobutyronitrile 4a. $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(500 \mathrm{mg}, 2.60 \mathrm{mmol})$ was added to the mixture, which was then stirred for 18 h at $120^{\circ} \mathrm{C}$. Work-up of the reaction mixture as described in (ii) gave $16(101 \mathrm{mg}$, $47 \%$ ).

## General procedure for the reactions of 3 with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in the presence of pyridine

To a solution of $\mathbf{3}(1.72-5.36 \mathrm{mmol})$ in absolute EtOH (15$52 \mathrm{~cm}^{3}$ ) was added $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(6.62-10.34 \mathrm{mmol})$ and pyridine ( $6.62-10.34 \mathrm{mmol})$. The mixture was heated for an appropriate time at reflux. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added to the cooled reaction mixture, which was then extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(50 \mathrm{~cm}^{3}\right)$ and dimethyl ether $\left(50 \mathrm{~cm}^{3} \times 3\right)$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent gave a residue, which was chromatographed on silica gel ( $2 \times 20 \mathrm{~cm}$ ) using a mixture of $n$-hexane and EtOAc (10:1) to give 14, 15, and 17.

Reaction of 3a. Reaction of $\mathbf{3 a}(570 \mathrm{mg}, 3.31 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.02 \mathrm{~g}, 6.62 \mathrm{mmol})$ in the presence of pyridine ( $523 \mathrm{mg}, 6.62 \mathrm{mmol}$ ) in EtOH ( $30 \mathrm{~cm}^{3}$ ) for 48 h gave 14a ( 217 $\mathrm{mg}, 44 \%$ ), 15a ( $164 \mathrm{mg}, 34 \%$ ), 4-cyano-2,2,3,3-tetramethyl- N -phenyl-4-phenyliminobutyrimidic acid ethyl ester 17 a ( 41 mg , $7 \%$ ), and unreacted 3a ( $75 \mathrm{mg}, 13 \%$ ).

17a: sticky solid (Found: C, 76.2; H, 7.4; N, 11.7. $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 76.4 ; \mathrm{H}, 7.5 ; \mathrm{N}, 11.6 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1637$ and $1581 ; \delta_{\mathrm{H}} 0.52\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.20(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 1.29\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.57\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $6.53(2 \mathrm{H}, \mathrm{d}, J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 6.80(2 \mathrm{H}, \mathrm{d}, J 7.1 \mathrm{~Hz}, \mathrm{ArH})$ and 6.85-6.98 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ), 7.05-7.21 (m, 4H, ArH); $\delta_{\mathrm{C}} 12.94$, $21.05,22.29,46.99,47.39,62.90,118.23,123.07,127.96,128.20$, $148.51,150.50,157.58,161.54$ and 164.04

Reaction of 2-(4-chlorophenylamino)-3-methylbut-2-enenitrile 3b. The reaction of $\mathbf{3 b}(971 \mathrm{mg}, 4.70 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2}$. $\mathrm{H}_{2} \mathrm{O}(1.88 \mathrm{~g}, 10.34 \mathrm{mmol})$ in the presence of pyridine $(818 \mathrm{mg}$, 10.34 mmol ) in EtOH ( $50 \mathrm{~cm}^{3}$ ) for 60 h gave 2,5-bis(4-chloro-phenylimino)-3,3,4,4-tetramethyladiponitrile 14b (201 mg, $21 \%$ ), 2-[ $N$-(4-chlorophenyl)-2-(4-chlorophenylimino)-2-cyano-1,1-dimethylethylamino]-3-methylbut-2-enenitrile 15b (331 mg, 34\%), and $N$-(4-chlorophenyl)-4-(4-chlorophenyl-imino)-4-cyano-2,2,3,3-tetramethylbutyrimidic acid ethyl ester 17b ( $237 \mathrm{mg}, 24 \%$ ).

14b: mp 187-188 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane) (Found: C, 64.3 ; H, $5.0 ; \mathrm{N}, 13.5 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4}$ requires $\mathrm{C}, 64.2 ; \mathrm{H}, 4.90 ; \mathrm{N}, 13.6 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2213$ and $1617 ; \delta_{\mathrm{H}} 1.54\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 6.94$ $(4 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 2 \times \mathrm{ArH})$ and $7.36(4 \mathrm{H}, \mathrm{d}, J 6.7 \mathrm{~Hz}, 2 \times \mathrm{ArH})$; $\delta_{\mathrm{C}} 22.82,48.31,110.93,121.14,129.44,132.82,146.84$ and 150.12.

15b: mp 74-75 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 64.3; $\mathrm{H}, 5.15 ; \mathrm{N}, 13.7 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{4}$ requires C, 64.2; H, 4.9; N, $13.6 \% ; \delta_{\mathrm{H}} 1.65\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.11(3 \mathrm{H}$ s, $\left.\mathrm{CH}_{3}\right), 6.87(2 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}), 6.90(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}$, $\mathrm{ArH}), 7.18(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 20.36,22.23,23.42,65.44,111.17,111.63,117.72$, 121.06, 122.81, 128.78, 129.40, 129.50, 133.09, 143.22, 146.32, 149.78 and 158.78 .

17b: mp $88-89^{\circ} \mathrm{C}$ (from $n$-hexane-EtOAc (10:1) (Found: $\mathrm{C}, 66.5 ; \mathrm{H}, 5.9 ; \mathrm{N}, 10.2 . \mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 66.7 ; \mathrm{H}$, 6.1; $\mathrm{N}, 10.1 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1637$ and $1581 ; \delta_{\mathrm{H}} 0.69(3 \mathrm{H}, \mathrm{t}$, $\left.J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.25\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.33(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 3.69\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 6.55(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}$, $\mathrm{ArH}), 6.79(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH})$ and $7.20(1 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 12.94,21.05,22.29,46.99,47.39,62.90,118.23$, $123.07,127.96,128.20,148.51,150.50,157.58,161.54$ and 164.04.

## Reaction of 2-(4-bromophenylamino)-3-methylbut-2-enenitrile

 3c. The reaction of $3 \mathbf{c}(432 \mathrm{mg}, 1.72 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ( $687 \mathrm{mg}, 3.78 \mathrm{mmol}$ ) in the presence of pyridine ( $299 \mathrm{mg}, 3.78$ mmol ) for 48 h in EtOH gave 2,5-bis(4-bromophenylimino)-$3,3,4,4$-tetramethyladiponitrile $\mathbf{1 4 c}(100 \mathrm{mg}, 24 \%), 2-[\mathrm{N}-(4-$ bromophenyl)-2-(4-bromophenylimino)-2-cyano-1,1-dimethyl-ethylamino]-3-methylbut-2-enenitrile $\mathbf{1 5 c}$ ( $149 \mathrm{mg}, 35 \%$ ), and$N$-(4-bromophenyl)-4-(4-bromophenylimino)-4-cyano-2,2,3,3tetramethylbutyrimidic acid ethyl ester $\mathbf{1 7 c}(81 \mathrm{mg}, 18 \%)$.

14c: mp 193-194 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane) (Found: C, $53.0 ; \mathrm{H}$, 4.3; $\mathrm{N}, 11.0 . \mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{4}$ requires C, 52.8; H, 4.0; $\mathrm{N}, 11.2 \%$ ); $v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2213$ and $1617 ; \delta_{\mathrm{H}} 1.47\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 6.80$ $(4 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 2 \times \mathrm{ArH})$ and $7.44(4 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, 2 \times \mathrm{ArH})$; $\delta_{\mathrm{C}} 22.83,48.33,110.90,120.74,121.40,132.41,147.34$ and 150.15 .

15c: mp 132-133 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 52.8; H, 4.0; N, 11.0. $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{~N}_{4}$ requires C, 52.8; H, 4.0; $\mathrm{N}, 11.2 \%) ; v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2200$ and $1626 ; \delta_{\mathrm{H}} 1.66(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.13\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.7$ $\mathrm{Hz}, \mathrm{ArH}), 6.84(2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}, \mathrm{ArH}), 7.32(2 \mathrm{H}, \mathrm{d}, J 9.1 \mathrm{~Hz}$, $\mathrm{ArH})$ and $7.49(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 20.33,22.22,23.38$, $65.39,111.07,111.33,116.07,117.58,120.96,121.29,122.59$, 131.81, 132.43, 143.64, 146.74, 149.84 and 158.94.

17c: sticky solid (Found: C, 53.1; H, 4.7; N, 7.9. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3}$ $\mathrm{Br}_{2} \mathrm{O}$ requires C, $\left.53.2 ; \mathrm{H}, 4.85 ; \mathrm{N}, 8.1 \%\right) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 1626$ and $1584 ; \delta_{\mathrm{H}} 0.72\left(3 \mathrm{H}, \mathrm{t}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 1.26(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 1.35\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 3.71\left(2 \mathrm{H}, \mathrm{q}, J 7.1 \mathrm{~Hz}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right)$, $6.56(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH}), 6.81(2 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH})$ and 7.18 ( $1 \mathrm{H}, \mathrm{d}, J 8.6 \mathrm{~Hz}, \mathrm{ArH}$ ).

Reaction of 3-methyl-2-(o-tolylamino)but-2-enenitrile 3d. The reaction of $\mathbf{3 d}(947 \mathrm{mg}, 5.30 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.03$ $\mathrm{g}, 11.2 \mathrm{mmol}$ ) in the presence of pyridine ( $876 \mathrm{mg}, 11.2 \mathrm{mmol}$ ) in EtOH $\left(50 \mathrm{~cm}^{3}\right)$ for 24 h gave 3,3,4,4-tetramethyl-2,5-bis $(o-$ tolylimino) adiponitrile 14d ( $324 \mathrm{mg}, 34 \%$ ) and 2-[2-cyano-1,1-dimethyl- $N$-(o-tolyl)-2-(o-tolylimino)ethylamino]-3-methylbut-2-enenitrile $\mathbf{1 5 d}$ ( $72 \mathrm{mg}, 8 \%$ ).

14d: mp 132-133 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane-EtOAc) (Found: C, 77.6; H 6.8; $\mathrm{N}, 15.2 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires C, 77.8; H, 7.1; N, $15.1 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2200$ and $1603 ; \delta_{\mathrm{H}} 1.51(12 \mathrm{H}, \mathrm{s}, 4 \times$ $\left.\mathrm{CH}_{3}\right), 2.10\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArCH}_{3}\right), 6.72-6.78(2 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH})$ and 7.02-7.18 ( $6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}) ; \delta_{\mathrm{C}} 17.85,23.04,48.21,111.15$, $117.75,125.79,126.62,127.06,129.49,130.56,147.45$ and 149.15; m/z $370\left(\mathrm{M}^{+}, 26 \%\right), 355\left(\mathrm{M}^{+}-\mathrm{Me}, 44\right), 185$ (100).

15d: sticky solid (Found: C, 77.6; H, 7.0; N, 15.0. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires C, 77.8; H, 7.1; N, 15.1\%); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2912$ and 1622; $\delta_{\mathrm{H}} 1.67\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 1.94\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.00$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.03\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.57-6.64$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.01-7.17(6 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.47-7.54(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$; $\delta_{\mathrm{C}} 17.51,20.42,21.62,23.04,24.82,67.34,11.13,114.22$, $117.40,118.76,126.27,126.51,126.58,127.07,129.35,129.90$, $130.51,132.04,137.39,143.22,146.92,147.19$ and 154.35 ; $m / z 370\left(\mathrm{M}^{+}, 31 \%\right), 355\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 60\right), 185(100)$.

Reaction of 3-methyl-2-( $\boldsymbol{m}$-tolylamino)but-2-enenitrile 3e. The reaction of $3 \mathrm{e}(998 \mathrm{mg}, 5.36 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.14 \mathrm{~g}$, 11.8 mmol ) in the presence of pyridine ( $933 \mathrm{mg}, 11.8 \mathrm{mmol}$ ) in EtOH ( $50 \mathrm{~cm}^{3}$ ) for 24 h gave 3,3,4,4-tetramethyl-2,5-bis $(m-$ tolylimino) adiponitrile $\mathbf{1 4 e}$ ( $371 \mathrm{mg}, 37 \%$ ) and 2-[2-cyano-1,1-dimethyl- $N$-( $m$-tolyl)-2-( $m$-tolylimino)ethylamino]-3-methyl-but-2-enenitrile $\mathbf{1 5 e}$ ( $310 \mathrm{mg}, 31 \%$ ).

14e: mp $62-64^{\circ} \mathrm{C}$ (from $n$-hexane) (Found: C, 77.85 ; H 6.8; $\mathrm{N}, 15.3 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires $\mathrm{C}, 77.8 ; \mathrm{H}, 7.1 ; \mathrm{N}, 15.1 \%$ ); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2216$ and $1599 ; \delta_{\mathrm{H}} 1.45\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 2.23$ $\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{ArCH}_{3}\right), 6.67-6.76(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}), 6.95(2 \mathrm{H}, \mathrm{d}, J$ $7.7 \mathrm{~Hz}, 2 \times \mathrm{ArH})$ and $7.16(2 \mathrm{H}, \mathrm{t}, J 8.0 \mathrm{~Hz}, 2 \times \mathrm{ArH}) ; \delta_{\mathrm{C}} 21.21$, $22.83,48.01,111.07,116.45,120.22,127.64,128.94,138.99$, 148.61 and 149.15.

15e: mp $74-75{ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C , 77.7; H 7.3; N, 15.25. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires C, 77.8; H, 7.1; N , $15.1 \%) ; v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2209$ and 1633; $\delta_{\mathrm{H}} 1.64(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{CH}_{3}\right), 2.02\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.23(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{3}$ ), $2.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.64-6.73(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.75-6.84$ $(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.95-7.02(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.04-7.12(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.16-7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 20.29,21.26,21.67$, 22.11, 23.27, 65.14, 111.41, 111.94, 116.11, 118.10, 118.79,
119.92, 122.27, 124.12, 127.70, 129.03, 129.08, 138.98, 139.13, 144.67, 148.37, 149.77 and 158.0.

Reaction of 3-methyl-2-(p-tolylamino)but-2-enenitrile 3f. The reaction of $\mathbf{3 f}(998 \mathrm{mg}, 5.30 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.12 \mathrm{~g}$, $11.7 \mathrm{mmol})$ in the presence of pyridine $(922 \mathrm{mg}, 11.7 \mathrm{mmol})$ in EtOH ( $50 \mathrm{~cm}^{3}$ ) for 22 h gave 3,3,4,4-tetramethyl-2,5-bis ( $p$ tolylimino) adiponitrile $\mathbf{1 4 f}$ ( $360 \mathrm{mg}, 37 \%$ ), 2-[2-cyano-1,1-dimethyl- $N$-( $p$-tolyl)-2-( $p$-tolylimino)ethylamino]-3-methylbut-2-enenitrile $\mathbf{1 5 f}$ ( $325 \mathrm{mg}, 33 \%$ ).

14f: mp 116-117 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane) (Found: C, 78.0; H, 7.15; N, 15.0. $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires C, 77.8; H, 7.1; N, 15.1\%); $v_{\text {max }}$ $(\mathrm{KBr}) / \mathrm{cm}^{-1} 2208$ and $1604 ; \delta_{\mathrm{H}} 1.42\left(12 \mathrm{H}, \mathrm{s}, 4 \times \mathrm{CH}_{3}\right), 2.21(6 \mathrm{H}$, $\left.\mathrm{s}, 2 \times \mathrm{ArCH}_{3}\right), 6.84(4 \mathrm{H}, \mathrm{d}, J 7.8 \mathrm{~Hz}, 2 \times \mathrm{ArH})$ and $7.06(4 \mathrm{H}, \mathrm{d}$, $J 7.8 \mathrm{~Hz}, 2 \times \mathrm{ArH}) ; \delta_{\mathrm{C}} 20.92,22.73,47.97,111.27,119.75$, 129.61, 136.89, 146.00 and 148.51.

15f: mp 74-75 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 77.7; H 7.3; $\mathrm{N}, 15.25 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4}$ requires C, 77.8; H, 7.1; $\mathrm{N}, 15.1 \%$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2209$ and $1633 ; \delta_{\mathrm{H}} 1.64\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3}\right), 2.02$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.09\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.28$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.64-6.73(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.75-6.84(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $6.95-7.02(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.04-7.12(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.16-7.24$ ( $1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$ ); $\delta_{\mathrm{C}} 20.29,21.26,21.67,22.11,23.27,65.14$, $111.41,111.94,116.11,118.10,118.79,119.92,122.27,124.12$, 127.70, 129.03, 129.08, 138.98, 139.13, 144.67, 148.37, 149.77 and 158.0.

Reaction of 2-(4-methoxyphenylamino)-3-methylbut-2enenitrile $\mathbf{3 g}$. The reaction of $\mathbf{3 g}(889 \mathrm{mg}, 4.40 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.60 \mathrm{~g}, 8.80 \mathrm{mmol})$ in the presence of pyridine ( $696 \mathrm{mg}, 8.80 \mathrm{mmol}$ ) in EtOH $\left(44 \mathrm{~cm}^{3}\right.$ ) for 12 h gave 2,5-bis-(4-methoxyphenylimino)-3,3,4,4-tetramethyladiponitrile $\quad \mathbf{1 4 g}$ ( $127 \mathrm{mg}, 15 \%$ ); mp $140-142{ }^{\circ} \mathrm{C}$ (from $n$-hexane) (Found: C, 71.4; H 6.4; $\mathrm{N}, 13.8 . \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{2}$ requires C, 71.6; $\mathrm{H}, 6.5$; N , $13.9 \%) ; v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2206$ and $1608 ; \delta_{\mathrm{H}} 1.45(12 \mathrm{H}, \mathrm{s}, 4 \times$ $\left.\mathrm{CH}_{3}\right), 3.73\left(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{CH}_{3} \mathrm{O}\right), 6.83(4 \mathrm{H}, \mathrm{d}, J 8.9 \mathrm{~Hz}, 2 \times \mathrm{ArH})$ and $7.02(4 \mathrm{H}, \mathrm{d}, J 8.9 \mathrm{~Hz}, 2 \times \mathrm{ArH})$; $\delta_{\mathrm{C}} 22.83,48.20,55.40$, $111.80,114.26,122.15,141.32,146.95$ and 158.98.

Reaction of ( $E$ )- and ( $Z$ )-3-methyl-2-( $p$-tolylamino)pent-2enenitrile $(E)$ - and $(\boldsymbol{Z})-3$. The reaction of a mixture of $(E)$ and $(Z)-3 \mathbf{h}(757 \mathrm{mg}, 3.78 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(1.51 \mathrm{~g}$, $8.32 \mathrm{mmol})$ in the presence of pyridine $(658 \mathrm{mg}, 8.32 \mathrm{mmol})$ in $\mathrm{EtOH}\left(38 \mathrm{~cm}^{3}\right)$ for 22 h gave a diastereomeric mixture of 3,4-diethyl-3,4-dimethyl-2,5-bis( $p$-tolylimino)adiponitrile 14h (191 mg, $25 \%$ ) and a diastereomeric mixture of $2-\{1$-[cyano( $p$-tolylimino)methyl]-1-methyl- $N$-( $p$-tolyl)propylamino\}-3-methylpent-2-enenitrile $\mathbf{1 5 h}(132 \mathrm{mg}, 17 \%)$.

14h: sticky solid; $\delta_{\mathrm{H}} 0.80-0.92\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.36-1.44$ $\left(6 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3}\right), 1.63-1.87\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.27(6 \mathrm{H}, \mathrm{s}, 2 \times$ $\left.\mathrm{ArCH}_{3}\right), 2.24-2.42\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 6.81-6.92(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH})$, 7.05-7.16 (4H, m, $2 \times \mathrm{ArH})$.

15h: sticky solid; $\delta_{\mathrm{H}} 0.80-0.91\left(4.5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.05(1.5 \mathrm{H}, \mathrm{t}$, $\left.J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.57-1.63\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right), 1.97-2.03(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{CH}_{3}\right), 2.04\left(2 \mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH}_{3}\right), 2.29$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{ArCH} H_{3}\right), 2.39\left(1 \mathrm{H}, \mathrm{qd}, J 7.6,2.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.56(1 \mathrm{H}, \mathrm{d}$, $\left.J 7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 6.77-6.83(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 6.94-7.10(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.10-7.16(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \mathrm{m} / \mathrm{z} 398\left(\mathrm{M}^{+}, 10 \%\right), 369$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{3}, 5\right), 342$ (9), 292 (11), 255 (100). $\mathrm{m} / \mathrm{z}$ HRMS (EI) Calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4}$ : $[\mathrm{M}+\mathrm{H}] ; 398.2470$. Found: $m / z$, 398.2472.

## Reaction of 1,1'-cyclohexylidene-1-phenylaminoacetonitrile

 3i. The reaction of $\mathbf{3 i}(998 \mathrm{mg}, 4.70 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(1.88 \mathrm{~g}, 10.3 \mathrm{mmol})$ in the presence of pyridine $(818 \mathrm{mg}$, 10.3 mmol ) in EtOH ( $50 \mathrm{~cm}^{3}$ ) for 48 h gave $\left\{1^{\prime}\right.$-[cyano(phenyl-imino)methyl]bicyclohexan-1-yl\} phenyliminoacetonitrile 14i ( $198 \mathrm{mg}, 20 \%$ ) and ( $1-[$ cyano(phenylimino) methyl]- $N$-phenylcyclohexylamino\} cyclohexylidenacetonitrile $\mathbf{1 5 i}$ ( $312 \mathrm{mg}, 31 \%$ ).14i: mp 224-225 ${ }^{\circ} \mathrm{C}$ (from $n$-hexane-EtOAc) (Found: C, 79.7; H 7.2; $\mathrm{N}, 13.3 . \mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4}$ requires $\mathrm{C}, 79.6 ; \mathrm{H}, 7.2 ; \mathrm{N}, 13.3 \%$ );
$v_{\text {max }}(\mathrm{KBr}) / \mathrm{cm}^{-1} 2200$ and $1621 ; \delta_{\mathrm{H}} 1.14-1.41\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right)$, $1.56-1.81\left(10 \mathrm{H}, \mathrm{m}, 5 \times \mathrm{CH}_{2}\right), 2.44\left(4 \mathrm{H}, \mathrm{d}, J 12.3 \mathrm{~Hz}, 2 \times \mathrm{CH}_{2}\right)$, $6.93(4 \mathrm{H}, \mathrm{d}, J 7.9 \mathrm{~Hz}, 2 \times \mathrm{ArH}), 7.17(2 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}, 2 \times \mathrm{ArH})$ and $7.30(4 \mathrm{H}, \mathrm{t}, J 7.9 \mathrm{~Hz}, 2 \times \mathrm{ArH})$; $\delta_{\mathrm{C}} 22.88,25.46,29.51$, $53.47,111.66,119.62,126.94,129.18,147.88$ and 149.16 .

15i: sticky solid (Found: C, 79.4; H, 7.1; N, 13.3. $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{~N}_{4}$ requires C, 79.6; H, 7.2; N, 13.3\%); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2208$ and 1626; $\delta_{\mathrm{H}} 1.15-1.86\left(12 \mathrm{H}, \mathrm{m}, 4 \times \mathrm{CH}_{3}\right), 1.88-2.10\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}\right)$, 2.39-2.53 ( $4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$ ), 2.53-2.68 ( $2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3}$ ), $6.80(2 \mathrm{H}, \mathrm{d}$, $J 7.5 \mathrm{~Hz}, \mathrm{ArH})$ and $7.04-7.41(8 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{ArH}) ; \delta_{\mathrm{C}} 23.12$, 25.08, 25.79, 26.87, 27.65, 29.92, 32.13, 32.82, 66.83, 109.70, $111.19,118.85,119.20,119.52,125.84,126.84,127.87,129.03$, $129.09,144.79,146.14,148.54$ and 163.74.

Reaction of 3 -ethyl-2-phenylaminopent-2-enenitrile $3 \mathbf{j}$. The reaction of $3 \mathbf{j}(1.06 \mathrm{~g}, 5.24 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.09 \mathrm{~g}$, 11.5 mmol ) in the presence of pyridine $(912 \mathrm{mg}, 11.5 \mathrm{mmol})$ in EtOH ( $52 \mathrm{~cm}^{3}$ ) for 48 h gave $2-\{1-[$ cyano(phenylimino)methyl]-1-ethyl- $N$-phenylpropylamino\}-3-ethylpent-2-enenitrile $\quad 15 \mathrm{j}$ ( $434 \mathrm{mg}, 41 \%$ ); sticky solid (Found: C, $78.5 ;$ H, $7.5 ; \mathrm{N}, 14.0$. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4}$ requires C, $78.35 ; \mathrm{H}, 7.6$; $\mathrm{N}, 14.1 \%$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 2209 and $1633 ; \delta_{\mathrm{H}} 0.67\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.98(6 \mathrm{H}, \mathrm{t}, J 7.5$ $\left.\mathrm{Hz}, 2 \times \mathrm{CH}_{3}\right), 1.11\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.10(2 \mathrm{H}$, sextet, $\left.J 7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.29-2.52\left(6 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CH}_{2}\right), 6.95-7.12(3 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.13-7.34(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.36-7.51(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 8.27,10.36,12.39,23.83,24.86,25.93,70.09,111.56,113.13$, $119.40,119.58,123.88,124.39,127.07,128.92,129.34,146.62$, $148.60,149.29$ and $166.39 ; m / z 398\left(\mathrm{M}^{+}, 14 \%\right), 369\left(\mathrm{M}^{+}-\right.$ $\mathrm{CH}_{2} \mathrm{CH}_{3}, 14$ ), 342 (29), 306 (15), 269 (100). $m / z$ HRMS (EI) Calc. for $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{4}$ : $[\mathrm{M}+\mathrm{H}]$; 398.2470. Found: $m / z, 398.2472$.

## Reaction of 15 a with $\mathrm{AlCl}_{3}$

To a solution of $\mathbf{1 5 a}(89 \mathrm{mg}, 0.26 \mathrm{mmol})$ in benzene $\left(3 \mathrm{~cm}^{3}\right)$ was added anhydrous $\mathrm{AlCl}_{3}(69 \mathrm{mg}, 0.52 \mathrm{mmol})$. The mixture was stirred for 48 h at rt . Water $\left(30 \mathrm{~cm}^{3}\right)$ was added into the mixture and then the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3} \times 2\right)$. The combined extract was dried $\left(\mathrm{MgSO}_{4}\right)$. Removal of the solvent, followed by chromatography ( $2 \times 20 \mathrm{~cm}$ ) of the residue using a mixture of $n$-hexane and EtOAc (5:1) gave 2-(2,3-dihydro-2,2-dimethyl-3-phenylimino-1 H -indol-1-yl)-3-methyl-but-2-enenitrile 18 ( $29 \mathrm{mg}, 35 \%$ ) and 11a ( $7 \mathrm{mg}, 12 \%$ ).

18: sticky solid (Found: C, $81.0 ; \mathrm{H}, 6.9 ; \mathrm{N}, 13.1 . \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3}$ requires C, $80.0 ; \mathrm{H}, 6.7 ; \mathrm{N}, 13.3 \%$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2209,1660$ and 1598; $\delta_{\mathrm{H}} 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.56\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.87(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.56(1 \mathrm{H}, \mathrm{t}, J 8.2 \mathrm{~Hz}, \mathrm{ArH}), 6.82(1 \mathrm{H}$, d, $J 7.6 \mathrm{~Hz}, \mathrm{ArH}), 7.44(1 \mathrm{H}, \mathrm{t}, J 8.2 \mathrm{~Hz}, 3 \times \mathrm{ArH}), 7.61(1 \mathrm{H}, \mathrm{d}$, $J 7.6 \mathrm{~Hz}, \mathrm{ArH}) ; m / z 315\left(\mathrm{M}^{+}, 36 \%\right), 300(29), 235$ (100).

## General procedure for the synthesis of 1,2-dihydroindol-3-ones 11

A mixture of compound 15 and $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ in HOAc $\left(3 \mathrm{~cm}^{3}\right)$ was heated for an appropriate length of time at reflux. The reaction mixture was cooled to rt, followed by addition of water $\left(50 \mathrm{~cm}^{3}\right)$, and $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)$, and then neutralized with aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(30 \mathrm{~cm}^{3} \times 2\right)$. The combined extract was dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave a brown liquid, which was chromatographed on a silica gel column $\left(2 \times 20 \mathrm{~cm}^{3}\right)$ using a mixture of $n$-hexane and $\operatorname{EtOAc}(5: 1)$ as the eluent.

2-(2,3-Dihydro-2,2-dimethyl-3-oxo-1 $\boldsymbol{H}$-indol-1-yl)-3-methyl-but-2-enenitrile 11a. The reaction of $\mathbf{1 5 a}(164 \mathrm{mg}, 0.48 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(96 \mathrm{mg}, 0.53 \mathrm{mmol})$ in HOAc $\left(10 \mathrm{~cm}^{3}\right)$ for 14 h gave $\mathbf{1 1 a}(86 \mathrm{mg}, 75 \%)$. From the reaction of $\mathbf{1 5 a}(273 \mathrm{mg}$, 0.80 mmol ) in HOAc ( $20 \mathrm{~cm}^{3}$ ) for 30 h was obtained 11a ( $108 \mathrm{mg}, 56 \%$ ).

2-(5-Chloro-2,3-dihydro-2,2-dimethyl-3-oxo-1 H -indol-1-yl)-3-methylbut-2-enenitrile 11b. The reaction of $\mathbf{1 5 b}(149 \mathrm{mg}, 0.36$ $\mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(78 \mathrm{mg}, 0.43 \mathrm{mmol})$ in HOAc
$\left(8 \mathrm{~cm}^{3}\right)$ for 96 h gave 11b ( $85 \mathrm{mg}, 86 \%$ ): mp 91-92 ${ }^{\circ} \mathrm{C}$ (from $n-$ hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 65.4; H 5.6; $\mathrm{N}, 10.1 . \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}$ requires $\mathrm{C}, 65.6 ; \mathrm{H}, 5.6 ; \mathrm{N}, 10.1 \%) ; v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2960,2209$, 1717 and 1607; $\delta_{\mathrm{H}} 1.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.39\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.81$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.53(1 \mathrm{H}, \mathrm{dd}, J 8.7,2.2 \mathrm{~Hz}$, $\mathrm{ArH}), 7.39(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, \mathrm{ArH})$ and $7.57(1 \mathrm{H}, \mathrm{d}, J 2.2 \mathrm{~Hz}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}} 20.49,22.01,22.45,22.53,70.59,105.49,111.45$, $116.10,120.37,124.52,125.00,137.38,155.14,160.38$ and 201.41; m/z $276\left(\mathrm{M}^{+}+2,29 \%\right), 274\left(\mathrm{M}^{+}, 89\right), 259(44), 231$ (100), 152 (51).

2-(5-Bromo-2,3-dihydro-2,2-dimethyl-3-oxo-1 H -indol-1-yl)-3-methylbut-2-enenitrile 11c. The reaction of $\mathbf{1 5 c}(85 \mathrm{mg}$, $0.17 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(36 \mathrm{mg}, 0.20 \mathrm{mmol})$ in HOAc $\left(4 \mathrm{~cm}^{3}\right)$ for 28 h gave $\mathbf{1 5 c}(30 \mathrm{mg}, 35 \%)$ and 11c ( $15 \mathrm{mg}, 45 \%$ ); sticky solid (Found: C, 56.6; H, 4.9; N, 9.0. $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}$ requires $\mathrm{C}, 56.4 ; \mathrm{H}, 4.7 ; \mathrm{N}, 8.8 \%$ ); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2990,2208$ and $1698 ; \delta_{\mathrm{H}} 1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.47\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.88(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.55(1 \mathrm{H}, \mathrm{d}, J 8.7 \mathrm{~Hz}, \mathrm{ArH}), 7.60(1 \mathrm{H}$, dd, $J 8.7,2.1 \mathrm{~Hz}, \mathrm{ArH})$ and $7.81(1 \mathrm{H}, \mathrm{d}, J 2.1 \mathrm{~Hz}, \mathrm{ArH})$; $\delta_{\mathrm{C}} 20.55,22.01,22.51,22.61,70.49,105.41,111.85,111.92$, 116.12, 120.93, 127.72, 140.03, 155.45, 160.46 and 201.27; $\mathrm{m} / \mathrm{z}$ $320\left(\mathrm{M}^{+}+2,97 \%\right), 318\left(\mathrm{M}^{+}, 100\right), 305\left(\mathrm{M}^{+}+2-\mathrm{CH}_{3}, 44\right), 303$ $\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 45\right), 277$ (81), 275 (83).

2-(2,3-Dihydro-3-oxo-2,2,7-trimethyl-1 H -indol-1-yl)-3-methyl-but-2-enenitrile 11d. The reaction of $\mathbf{1 5 d}(70 \mathrm{mg}, 0.19 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(42 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{HOAc}\left(2 \mathrm{~cm}^{3}\right)$ for 18 h gave 11d ( $32 \mathrm{mg}, 68 \%$ ): sticky solid; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2208$, 1698 and 1613; $\delta_{\mathrm{H}} 1.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.86$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.17\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.79(1 \mathrm{H}, \mathrm{t}$, $J 7.5 \mathrm{~Hz}, \mathrm{ArH}), 7.24(1 \mathrm{H}, \mathrm{d}, J 7.2 \mathrm{~Hz}, \mathrm{ArH})$ and $7.61(1 \mathrm{H}, \mathrm{d}$, $J 7.5 \mathrm{~Hz}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 18.21,20.77,22.22,22.62,22.74,70.15$, 109.65, 117.04, 120.47, 120.89, 122.45, 123.00, 140.77, 155.94, 157.18 and 203.35; m/z 254 ( $\mathrm{M}^{+}, 98 \%$ ), 239 (73), 211 (100), 198 (21). $\mathrm{m} / \mathrm{z}$ HR MS (EI) Calc. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}] ; 254.1419$. Found: $m / z$, 254.1407.

2-(2,3-Dihydro-3-oxo-2,2,4-trimethyl-1 H -indol-1-yl)-3-methylbut-2-enenitrile 11e(I) and 2-(2,3-dihydro-3-oxo-2,2,6-trimethyl- $\mathbf{1 H}$-indol-1-yl)-3-methylbut-2-enenitrile 11e(II). The reaction of $15 \mathrm{e}(254 \mathrm{mg}, 0.69 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ( $151 \mathrm{mg}, 0.83 \mathrm{mmol}$ ) in HOAc ( $14 \mathrm{~cm}^{3}$ ) for 6 h gave 11e(I) ( $26 \mathrm{mg}, 14 \%$ ): mp $84-86{ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 75.7; H 7.0; $\mathrm{N}, 11.0 . \mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires C, 75.6; H, 7.1; N , $11.0 \%$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2209,1699$ and $1598 ; \delta_{\mathrm{H}} 1.19(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 1.38\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $2.53\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.36(1 \mathrm{H}, \mathrm{d}, J 8.1 \mathrm{~Hz}, \mathrm{ArH}), 6.58(1 \mathrm{H}, \mathrm{d}, J 7.4$ $\mathrm{Hz}, \mathrm{ArH})$ and $7.29(1 \mathrm{H}, \mathrm{t}, J 7.8 \mathrm{~Hz}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 18.31,20.48$, $22.29,22.47,22.68,69.54,106.13,107.40,116.49,117.33$, $121.27,136.78,140.82,157.35,159.69$ and 203.32; $m / z 254\left(\mathrm{M}^{+}\right.$, $98 \%$ ), 239 (100), 211 (84), 132 (25); and 11e(II) $\mathrm{mp} 81-82{ }^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 75.3; H 7.35; N, 11.1. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires C, $75.6 ; \mathrm{H}, 7.1 ; \mathrm{N}, 11.0 \%$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 2208, 1704 and 1613; $\delta_{\mathrm{H}} 1.19\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.37\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $1.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.21\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.35$ $(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}), 6.65(1 \mathrm{H}, \mathrm{d}, J 7.9 \mathrm{~Hz}, \mathrm{ArH})$ and $7.49(1 \mathrm{H}, \mathrm{d}, J 7.9$ $\mathrm{Hz}, \mathrm{ArH}$ ); $\delta_{\mathrm{C}}$ 20.35, 22.03, 22.41 (3 overlapped peaks), 69.99, $105.75,110.15,116.34,116.97,121.29,124.79,149.32,157.20$, 159.99 and 201.86; m/z $254\left(\mathrm{M}^{+}, 100 \%\right), 239$ (75), 211 (84), 174 (20), 132 (30).

2-(2,3-Dihydro-3-oxo-2,2,5-trimethyl-1 H -indol-1-yl)-3-methyl-but-2-enenitrile 11f. The reaction of $\mathbf{1 5 f}(142 \mathrm{mg}, 0.38 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(84 \mathrm{mg}, 0.46 \mathrm{mmol})$ in $\mathrm{HOAc}\left(8 \mathrm{~cm}^{3}\right)$ for 4 h gave $\mathbf{1 1 f}\left(90 \mathrm{mg}, 92^{\%}\right.$ ): mp $96-97^{\circ} \mathrm{C}$ (from $n$-hexane- $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) (Found: C, 75.6; H 7.4; N, 11.1. $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ requires C, $75.6 ; \mathrm{H}$, 7.1; $\mathrm{N}, 11.0 \%$ ); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2200,1698$ and $1613 ; \delta_{\mathrm{H}} 1.19$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.36\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 1.80\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.19(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3}\right), 2.23\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 6.49(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.27(1 \mathrm{H}$,
d, $J 8.3 \mathrm{~Hz}, \mathrm{ArH})$ and $7.39(1 \mathrm{H}, \mathrm{s}, \mathrm{ArH}) ; \delta_{\mathrm{C}} 13.99,20.29,21.32$, 22.07, 22.32, 69.96, 106.02, 110.11, 116.34, 119.25, 124.45, 129.11, 138.76, 155.16, 159.55 and 202.57; m/z $254\left(\mathrm{M}^{+}, 100 \%\right)$, 239 (57), 211 (98), 132 (43).

2-(2,3-Dihydro-2,5-dimethyl-2-ethyl-3-oxo-1 H -indol-1-yl)-3-methylpent-2-enenitrile 11h. The reaction of $\mathbf{1 5 h}(81 \mathrm{mg}$, $0.20 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(44 \mathrm{mg}, 0.24 \mathrm{mmol})$ in HOAc $\left(1 \mathrm{~cm}^{3}\right)$ for 480 h gave $11 \mathrm{~h}(35 \mathrm{mg}, 60 \%)$; sticky solid; $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2968,2208,1692$ and $1606 ; \delta_{\mathrm{H}} 0.77-0.83(3 \mathrm{H}, \mathrm{m}), 1.02$ $(2 \mathrm{H}, \mathrm{m}), 1.23-1.44(4 \mathrm{H}, \mathrm{m}), 1.45(2 \mathrm{H}, \mathrm{m}), 1.75(1 \mathrm{H}, \mathrm{m}), 1.97$ $(1 \mathrm{H}, \mathrm{m}), 2.27-2.34(5 \mathrm{H}, \mathrm{m}), 2.61(1 \mathrm{H}, \mathrm{m}), 6.47-6.64(1 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}), 7.31-7.39(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.47(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; m / z$ of isomer-1 $282\left(\mathrm{M}^{+}, 50 \%\right), 267\left(\mathrm{M}^{+}-\mathrm{CH}_{3}, 10\right), 253\left(\mathrm{M}^{+}-\right.$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}, 100\right) ; \mathrm{m} / \mathrm{z}$ of isomer-2 $282\left(\mathrm{M}^{+}, 53 \%\right), 267\left(\mathrm{M}^{+}-\mathrm{CH}_{3}\right.$, 10), $253\left(\mathrm{M}^{+}-\mathrm{CH}_{2} \mathrm{CH}_{3}, 100\right) . \mathrm{m} / \mathrm{z}$ HRMS (EI) Calc. for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}:[\mathrm{M}+\mathrm{H}] ; 282.1732$. Found: $m / z$, 282.1743.

2-(2,2-Diethyl-2,3-dihydro-3-oxo-1 $\boldsymbol{H}$-indol-1-yl)-3-ethylpent-2-enenitrile 11j. The reaction of $\mathbf{1 5 j}(133 \mathrm{mg}, 0.33 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(77 \mathrm{mg}, 0.40 \mathrm{mmol})$ in $\mathrm{HOAc}\left(4 \mathrm{~cm}^{3}\right)$ for 480 h gave $\mathbf{1 1 j}(15 \mathrm{mg}, 15 \%)$ : sticky solid (Found: C, 77.2; H 8.3; N, 9.6. $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}$ requires $\mathrm{C}, 77.0 ; \mathrm{H}, 8.2 ; \mathrm{N}, 9.45 \%$ ); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 2968,2200,1698$ and $1606 ; \delta_{\mathrm{H}} 0.71\left(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right)$, $0.78\left(3 \mathrm{H}, \mathrm{t}, J 7.4 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 0.96\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.20$ $\left(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.56\left(1 \mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.71(1 \mathrm{H}, \mathrm{q}$, $\left.J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.89\left(1 \mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.01(1 \mathrm{H}, \mathrm{q}, J 7.5$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 2.16\left(2 \mathrm{H}, \mathrm{q}, J 7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.58(2 \mathrm{H}$, octet, $J 7.5 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 6.49(1 \mathrm{H}, \mathrm{d}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 6.79(1 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}, \mathrm{ArH})$, $7.42(1 \mathrm{H}, \mathrm{t}, J 8.3 \mathrm{~Hz}, \mathrm{ArH}), 7.58(1 \mathrm{H}, \mathrm{d}, J 7.9 \mathrm{~Hz}, \mathrm{ArH})$; $m / z 296\left(\mathrm{M}^{+}, 22 \%\right), 267(100)$.

## Acknowledgements

The authors are grateful to the Brain Korea 21 program for financial support of this work.

## References

1 S. Yun and K. Kim, Tetrahedron Lett., 2000, 41, 1469 and references cited therein.
2 (a) Y. Ito, H. Yokoya, K. Kyono, S. Yamamura, Y. Yamada and T. Matsuura, J. Chem. Soc., Chem. Commun., 1980, 898; (b) J. Toye and L. Ghosez, J. Am. Chem. Soc., 1975, 97, 2276; (c) N. De Kimpe, R. Verhé, L. De Buyck and N. Schamp, Synthesis, 1979, 741; (d) H. Albrecht and K. Pfaff, Synthesis, 1978, 897; (e) S. De Lombaert, B. Lesur and L. Ghosez, Tetrahedron Lett., 1982, 23, 4251; ( $f$ ) J.-M. Fang and H.-T. Chang, J. Chem. Soc., Perkin Trans. 1, 1988, 1945; (g) J.-M. Fang and C.-C. Chen, J. Chem. Soc., Chem. Coттип., 1990, 3365.
3 (a) D. C. Nonhebel and J. C. Walton, Free-radical Chemistry, Cambridge University Press, Cambridge, 1974, ch. 10, pp. 393-416; (b) J. March, Advanced Organic Chemistry; 4th edn., John Wiley and Son, New York, 1992; ch. 14, pp. 705-708.
4 (a) A. S. Bourlot, E. Desarbre and J. Y. Merour, Synthesis, 1994, 411; (b) A. Hutchison and Y. Kisui, J. Am. Chem. Soc., 1979, 101, 6786; (c) R. M. Williams, T. Glinska, E. Kwast, H. Coffiman and J. K. Stille, J. Am. Chem. Soc., 1990, 112, 808.

5 (a) D. C. Nonhebel and J. C. Walton, Free-radical Chemistry, Cambridge University Press, Cambridge, 1974, ch. 10, pp. 305-416; (b) F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, Wiley, New York, 1980; pp. 800-821; (c) J. Cossy and A. Bouzide, Tetrahedron, 1999, 55, 6483.
6 Intramolecular trapping of a cation by methoxyphenyl ring was proposed. Refer to V. D. Parker and L. Eberson, Acta Chem. Scand., 1970, 24, 3553.
7 A. L. J. Beckwith and A. A. Zavitsas, J. Am. Chem. Soc., 1986, 108, 8230.

8 (a) J. K. Kochi, J. Org. Chem., 1965, 30, 3265; (b) J. K. Kochi, Organometallic Mechanisms and Catalysis, Academic Press: New York, 1978, ch. 14, pp. 372-441; (c) G. M. Whitesides and W. J. Ehmann, J. Am. Chem. Soc., 1970, 92, 5625.

9 (a) B. Lesur, J. Toye, M. Chantrenne and L. Ghosez, Tetrahedron Lett., 1982, 23, 2835; (b) N. De Kimpe, R. Verhé, L. De Buyck, J. Chys and N. Schamp, Org. Prep. Proced. Int., 1978, 10, 149; (c) N.

De Kimpe, R. Verhé, L. De Buyck and N. Schamp, Bull. Soc. Chim. Belg., 1979, 88, 59.
10 The reaction of aniline $(510 \mathrm{mg}, 5.47 \mathrm{mmol})$ with $\mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ $(450 \mathrm{mg}, 2.49 \mathrm{mmol})$ in HOAc $\left(10 \mathrm{~cm}^{3}\right)$ for 24 h at reflux under an $\mathrm{N}_{2}$ atmosphere gave acetanilide ( $562 \mathrm{mg}, 76 \%$ ).
$11 \mathrm{Cu}(\mathrm{OAc})_{2} \cdot \mathrm{H}_{2} \mathrm{O}(450 \mathrm{mg})$ was treated with HOAc $\left(10 \mathrm{~cm}^{3}\right)$ at rt and reflux temperatures for 24 h , respectively, followed by filtration of the undissolved copper acetate. From the filtrate were obtained $280 \mathrm{mg}(62 \%)$ and $367 \mathrm{mg}(82 \%)$ of copper acetate, respectively.
12 (a) D. Ferraris, W. J. Drury, C. Cox and T. Lectka, J. Org. Chem., 1998, 63, 4568; (b) Q. Attanasi, P. Palma and F. Serra-Zanetti, Synthesis, 1983, 741; (c) C. A. Coda, G. Desimoni, M. Pappalardo, P. P. Righetti, P. F. Seneci, G. Tacconi and R. Oberti, Tetrahedron, 1985, 41, 2545; (d) M. Joucla and M. E1 Goumzili, Tetrahedron Lett., 1986, 27, 1681.
13 (a) E. J. Corey and W. R. Hertler, J. Am. Chem. Soc., 1960, 82, 1657; (b) D. H. R. Barton, A. L. J. Beckwith and A. Goosen, J. Chem. Soc., 1965, 181.
14 (a) D. I. Patel, R. K. Smalley and S. Higson, J. Chem. Soc., Perkin Trans. 1, 1986, 1107; (b) T. Kawasaki, Y. Nonaka, M. Kobayashi and M. Sakamoto, J. Chem. Soc., Perkin Trans. 1, 1991, 2445; (c) C. Berti and L. Greci, J. Org. Chem., 1981, 46, 3060; (d) C. Berti, L. Greci, R. Andruzzi and A. Trazza, J. Org. Chem., 1982, 47, 4895.

15 J. Y. Mérour, J. Y. Coadou and F. Tatibouët, Synthesis, 1982, 1053.

16 (a) A. Buzas, C. Herisson and G. Lavielle, Synthesis, 1977, 129; (b) A. Buzas and J. Y. Mérour, Synthesis, 1989, 457

17 (a) K. N. Kilminster and M. Sainsbury, J. Chem. Soc., Perkin Trans. 1, 1972, 2264; (b) F. Nivoliers, A. Decormeille, A. Godard and G. Quéauiner, Tetrahedron Lett., 1980, 21, 4485; (c) J. Y. Mérour and L. Salvelon, Heterocycles, 1991, 32, 849.
18 A. Hutchison and Y. Kishi, J. Am. Chem. Soc., 1979, 101, 6786.

19 R. M. Williams, T. Ginska, E. Kwast, H. Coffman and J. K. Stille, J. Am. Chem. Soc., 1990, 112, 808.

20 S. Kim and J. Lee, J. Org. Chem., 1984, 49, 1712
21 (a) D. Mosnaim and D. C. Nonhebel, Tetrahedron, 1969, 25, 1591; (b) P. Kovacic and K. E. Davis, J. Am. Chem. Soc., 1964, 86, 427; (c) S. Petruso, S. Caronna and B. Sprio, J. Heterocycl. Chem., 1990, 27, 1209.
22 (a) N. A. LeBel, M. E. Post and J. J. Wang, J. Am. Chem. Soc., 1964, 86, 3759; (b) S. Trofimenko, J. Org. Chem., 1964, 29, 3046; (c) R. V. Stevens and J. T. Lai, J. Org. Chem., 1972, 37, 2138.

23 C. L. Stevens and F. T. Gillis, J. Am. Chem. Soc., 1957, 79, 3448.
24 V. V. Schepin, V. V. Fotin, N. Yu, Russkikh, A. N. Vikent'eva and S. V. Sinani, Zh. Org. Khim., 1989, 25, 733.

